Trident® Tritanium® Acetabular System
Surgical Protocol
Sizes 74 – 80mm
Indications for Trident Polyethylene Insert with Metal or Ceramic Head

- Painful, disabling joint disease of the hip resulting from: degenerative arthritis, rheumatoid arthritis, post-traumatic arthritis or late stage avascular necrosis.
- Revision of previous unsuccessful femoral head replacement, cup arthroplasty or other procedure.
- Clinical management problems where arthrodesis or alternative reconstructive techniques are less likely to achieve satisfactory results.
- Where bone stock is of poor quality or inadequate for other reconstructive techniques as indicated by deficiencies of the acetabulum.

Contraindications for Trident Polyethylene Insert with Metal or Ceramic Head

- Any active or suspected latent infection in or about the hip joint.
- Any mental or neuromuscular disorder which would create an unacceptable risk of prosthesis instability, prosthesis fixation failure, or complications in post-operative care.
- Bone stock compromised by disease, infection or prior implantation which cannot provide adequate support and/or fixation to the prosthesis.
- Skeletal immaturity.

Warnings and Precautions

See package insert for warnings, precautions, adverse effects and other essential product information.
Introduction

The Trident Tritanium Acetabular System provides surgeons with a highly porous ingrowth surface.

The Trident Tritanium Acetabular System hemispherical shells are manufactured from Commercially Pure Titanium. The Trident Tritanium shells utilize the patented Innerchange locking mechanism. This unique locking mechanism helps provide a secure interface between the polyethylene insert and shell. The Large Size shells are available in sizes 74mm-80mm, and offer the option of X3 or Crossfire polyethylene inserts. Refer to Table 1 for insert and shell compatibility and sizing options.

The Trident Polyethylene Inserts are designed to lock into the shell by means of a circumferential ring that engages the shell’s mating groove. Rotational stability may be achieved when the shell’s anti-rotational barbs interlock with the insert’s scallops.

The Trident Tritanium Acetabular System utilizes the CuttingEdge Total Hip Acetabular Instrumentation. This surgical technique is a guide to preparing the acetabulum for the Trident Tritanium Hemispherical Acetabular implants.
Table 1: Compatibility Table

Femoral Head, X3 Liner and Cup Compatibility Chart

<table>
<thead>
<tr>
<th>Shell Size, Liner Alpha Code, and Liner Thickness (mm)</th>
<th>74, 76, 78, 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trident Tritanium Hemispherical Shell</td>
<td></td>
</tr>
<tr>
<td>Liner Alpha Code</td>
<td></td>
</tr>
<tr>
<td>Anatomic Femoral Heads</td>
<td></td>
</tr>
<tr>
<td>44mm</td>
<td>10.6</td>
</tr>
<tr>
<td>40mm</td>
<td>12.6</td>
</tr>
<tr>
<td>36mm</td>
<td>14.7</td>
</tr>
<tr>
<td>Femoral Heads</td>
<td></td>
</tr>
<tr>
<td>32mm</td>
<td>16.7</td>
</tr>
<tr>
<td>28mm</td>
<td>18.7</td>
</tr>
<tr>
<td>26mm</td>
<td>19.7</td>
</tr>
<tr>
<td>22mm</td>
<td>21.6</td>
</tr>
</tbody>
</table>

Available in X3 only and 0° only.

Trident Tritanium Hemispherical Shell

<table>
<thead>
<tr>
<th>Alpha Code</th>
<th>Trident Tritanium Hemispherical Shell Size (mm)</th>
<th>Trident 0°, 10° Inserts (mm)</th>
<th>Trident Eccentric 0°, 10° Inserts (mm)</th>
<th>Trident Elevated Rim Inserts (mm)</th>
<th>Trident 0° Constrained Inserts (mm)</th>
<th>Trident 10° Constrained Inserts (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>74, 76, 78, 80</td>
<td>22, 26, 28, 32, 36, 40**, 44**</td>
<td>28, 32, 36</td>
<td>28, 32, 36</td>
<td>32</td>
<td>28</td>
</tr>
</tbody>
</table>

Available in X3 only and 0° only.
Pre-operative Planning and X-ray Evaluation

Pre-operative planning and X-ray evaluation aids in the selection of the most favorable implant style and optimal size for the patient’s hip pathology. Selecting potential implant styles and sizes can facilitate operating room preparation and assure availability of an appropriate size selection. X-ray evaluation may also help detect anatomic anomalies that could prevent the intra-operative achievement of the established pre-operative goals.

James A. D’Antonio, M.D. Tip:
“Templating is an important step in the procedure because it allows surgeons to estimate the size of the implant to be used. Assess the center of rotation and offset of the hip to determine inferior location of the acetabular component relative to the tear drop.”

If a revision of an existing acetabular shell is required, the surgeon’s preferred technique for removing the acetabular shell should be used.

Acetabular Preparation

The acetabulum is prepared by the release and removal of soft tissue using the surgeon’s preferred technique to gain adequate exposure for reaming. Excision of the labrum and osteophytes allows for proper visualization of the bony anatomy, and improves ease of reaming.

Note: Careful identification and removal of osteophytes can help reduce the possibility of bone-to-bone or component-to-bone impingement.

Stryker Orthopaedics’ Retractors can be utilized to gain acetabular exposure (Figure 1).

With the acetabulum exposed, bony defects, can be identified. If necessary, bone grafting options may be considered prior to reaming.
Spherical Reaming

Caution: Only the CuttingEdge Spherical Reamers should be used to prepare the acetabulum for the Trident Tritanium acetabular components.

To obtain congruity in the reaming process, an optional 45/20° Abduction/Anteversion Alignment Guide can be attached to the CuttingEdge Reamer Handle (Figure 2). The alignment guide, when perpendicular to the long axis of the patient, will orient the reamer handle at 45° of abduction, thereby placing the axis of the spherical reamer at 45° of inclination (Figure 3). The reamer handle may then be positioned at 20° of anteversion by aligning the left/right anteversion rod on the alignment guide so that it is parallel to the long axis of the patient.

Caution: All external alignment guides depend on knowing the patient is in a lateral decubitus position, therefore acceptable to anteversion.

Note: Changes in pelvic tilt and pelvic flexion caused by patient positioning on table as well as disease in contralateral hip, spine, and pelvis may impact achievement of 45/20 degree abduction/anteversion.

It is recommended that initial reaming begin with a CuttingEdge Spherical Reamer that is 4mm smaller than the templated or gauged size. The reamer is attached to the reamer handle by pushing down and applying a quarter-turn to lock in place. Reaming progresses in 1mm increments until final desired sizing is achieved. Due to the porous nature of the Tritanium coating, the outer diameter may be larger than the size indicated. The surgeon must consider this in the acetabular preparation.

Note: The amount of interference fit should be determined intra-operatively based on the patient's bone quality. When osteoporotic bone is encountered, it is recommended to under-ream by 1mm. When sclerotic bone is encountered, it may be difficult to fully seat the shell with a 1mm interference fit. In this situation, it is recommended to ream less than 1mm, or line-to-line to reduce the potential for problems that may typically occur in dense bone. Potential challenges implanting acetabular shells may include: acetabular fracture, failure to fully seat the implant, or slight deformation of the titanium shell, making seating of the insert more difficult.

The full profile design of the CuttingEdge Spherical Reamer necessitates reaming to the full depth. The reamer head should be driven to the point where the rim/cross bar contacts the acetabular wall at the peripheral lunate region. Removal of the reamer from the handle is performed by pulling back on the locking sleeve and rotating the reamer head a quarter-turn in a clockwise direction (Figure 4).

Care should be taken so as not to enlarge or distort the acetabulum by eccentric reaming. Final acetabular reaming ideally shows the hemispherical acetabulum denuded of cartilage, with the subchondral plate preferably intact, and the anterior acetabular wall preserved.

It is believed that the subchondral plate functions as an important load-sharing and support mechanism. Preserving as much of the subchondral plate as possible may improve the qualities of the bone/metal composite.

Note: The CuttingEdge Spherical Reamers are very aggressive and perform best when sharp. Care should be taken to protect the reamer from unnecessary handling, as dull or damaged cutting teeth may cause improper reaming. Dull cutting teeth will deflect to cut softer bone and resist hard bone. This situation may result in an irregularly shaped or enlarged acetabulum preparation.
Trial Evaluation

Following the reaming procedure, the appropriate Trident Tritanium Window Trial (Table 2) is threaded onto the CuttingEdge Shell Positioner/Impactor and placed in the acetabulum to evaluate the size and congruity of the preparation (Figure 5). The Trident Tritanium Window Trials are available in line-to-line sizes and sizes 1mm-2mm smaller than the implant OD so as not to destroy the press-fit. The trial is “windowed” for visualization and assessment of fit, contact and congruency of the trial within the acetabulum. By inserting the Trident Trial Insert into the Trident Tritanium Window Trial (Figures 6 & 7), joint mechanics can be evaluated. To ensure that the Trial Insert is well fixed to the Trident Tritanium Window Trial during the trial evaluation, an Acetabular Trial Insert Containment Screw can be used. The Containment Screw Kit (2230-0010) is optional (Figure 6). The containment screw has a Torx drive feature and is compatible with Torx screwdrivers.

To facilitate insertion/removal of the Trial Insert, holding forceps may be placed into the two holes in the plastic face.

Table 2: Trident Tritanium Window Trial/Trial Insert Sizing

<table>
<thead>
<tr>
<th>Catalog Numbers</th>
<th>Trident Tritanium Window Trial (mm)</th>
<th>Trident Trial Insert Compatibility Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2208-4072</td>
<td>72</td>
<td>J</td>
</tr>
<tr>
<td>2208-4073</td>
<td>73</td>
<td>J</td>
</tr>
<tr>
<td>2208-4074</td>
<td>74</td>
<td>J</td>
</tr>
<tr>
<td>2208-4075</td>
<td>75</td>
<td>J</td>
</tr>
<tr>
<td>2208-4076</td>
<td>76</td>
<td>J</td>
</tr>
<tr>
<td>2208-4077</td>
<td>77</td>
<td>J</td>
</tr>
<tr>
<td>2208-4078</td>
<td>78</td>
<td>J</td>
</tr>
<tr>
<td>2208-4079</td>
<td>79</td>
<td>J</td>
</tr>
<tr>
<td>2208-4080</td>
<td>80</td>
<td>J</td>
</tr>
</tbody>
</table>
Trident Tritanium Hemispherical Shell Implantation
Assess the acetabulum and surrounding soft tissue prior to shell introduction to ensure nothing is preventing shell implantation. During shell introduction into the acetabulum, minimize damage to the shell coating by instrumentation.

After completing the trial reduction, select the appropriately sized Trident Tritanium Acetabular shell as clearly identified on the product label. Ensure the patient is in the correct position. At this step it is prudent to reassess patient positioning in the surgical field.

If desired, the CuttingEdge Abduction/Anteversion Alignment Guide can be attached to the CuttingEdge Shell Positioner/Impactor to help establish the recommended 45° of abduction inclination and 20° of anteversion (Figures 8 & 9).

Caution: The Alignment Guide may yield inaccurate placement if the pelvis has moved from the original position during intraoperative manipulation. Small changes in pelvic flexion will greatly affect anteversion. The Alignment Guide is only one aid to assist with proper implant positioning. The surgeon must also rely on anatomic landmarks to avoid improper positioning of components.

The metal shell is threaded onto the impactor at the threaded hole in the dome of the metal shell. It is important to fully engage the threads and seat the impactor against the shell. Otherwise, the threads on the metal shell could become damaged, resulting in difficulty with the removal of the impactor from the shell.

The cluster screw hole pattern holes are intended to be oriented superiorly (Figure 10).

Note: Shell positioning must be carefully considered when selecting certain inserts as hooded options are not available in all sizes to adjust joint stability. Proper positioning of the Trident Tritanium Hemispherical Shell will minimize potential impingement and provide stability and articulation between the Insert and Head. As with any acetabular system, excessive vertical orientation and/or anteversion of the Shell should be avoided as this may lead to premature wear of the components' surfaces.
The recommended metal shell abduction angle of 45° is determined by positioning the alignment guide perpendicular to the long axis of the patient (Figure 11).

Metal shell anteversion is set at approximately 20° by moving the cup impactor so that the left/right anteversion rod is parallel to the long axis of the patient (Figure 12).

The metal shell is impacted into the acetabulum using a mallet until a tight, stable press-fit is achieved. The thumbscrew on the alignment guide is then loosened to remove the guide. After removing the guide, the impactor handle is carefully unthreaded from the shell.

The depth of the shell seating may now be determined by viewing through the threaded hole in the dome. If it is determined that the shell is not fully seated, the Cutting Edge Final Cup Impactor may then be required to assist in impacting the shell until it is completely seated in the prepared acetabulum.

If utilizing the optional dome hole plug, assess that the plug is fully threaded into the shell to prevent liner impingement.
Optional Screw Utilization

Note: Trident Tritanium Acetabular Shells are not intended to be drilled through where existing screw holes are not provided.

Only Stryker Orthopaedics Cancellous 6.5mm Bone Screws can be used. Stryker Orthopaedics offers 6.5mm diameter cancellous bone screws for use in the shell dome, which are available in a variety of lengths (Table 3). The surgeon has the option of Hex or Torx screws as shown in Table 3. Stryker Orthopaedics Cancellous Bone Screws are designed to be inserted or removed only with the assistance of Stryker Orthopaedics screw instruments.

After determination of the proper site for screw placement, a 3.2mm diameter drill is passed through a drill guide to the desired depth (Figure 13). It is important to use the proper drill guide (6060-5-310 or 6060-5-300) to keep the pilot hole as straight and concentric as possible, so that the screw head fully seats. The screw hole is then sounded to determine the hole’s depth. The properly sized screw is then selected and implanted into the bone using Stryker Orthopaedics Screw Drivers with a high torque configuration driver head (Figure 14).

Note: After screw implantation, assess that the screw head is seated flush against the shell to help prevent improper seating of the acetabular liner.

Note: In hard bone, the use of 6.5mm dome screws prepared in the usual fashion may be difficult. The use of a 4.0mm drill bit may make the utilization easier, without substantial compromise of screw purchase.

Caution: Do not pass a drill, screw or any other instrumentation beyond the inner table of the pelvis. Malposition of either the shell screw hole orientation, screw hole preparation or improper use of the screws themselves may contribute to detrimental clinical consequences.

Table 3: Stryker Orthopaedics Cancellous 6.5mm Bone Screws

<table>
<thead>
<tr>
<th>Screw Lengths (mm)</th>
<th>Hex Screw Catalog Number</th>
<th>Screw Lengths (mm)</th>
<th>Torx Screw Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5260-5-012</td>
<td>15</td>
<td>2080-0015</td>
</tr>
<tr>
<td>14</td>
<td>5260-5-014</td>
<td>20</td>
<td>2080-0020</td>
</tr>
<tr>
<td>16</td>
<td>5260-5-016</td>
<td>25</td>
<td>2080-0025</td>
</tr>
<tr>
<td>18</td>
<td>5260-5-018</td>
<td>30</td>
<td>2080-0030</td>
</tr>
<tr>
<td>20</td>
<td>5260-5-020</td>
<td>35</td>
<td>2080-0035</td>
</tr>
<tr>
<td>22</td>
<td>5260-5-022</td>
<td>40</td>
<td>2080-0040</td>
</tr>
<tr>
<td>24</td>
<td>5260-5-024</td>
<td>45</td>
<td>2080-0045</td>
</tr>
<tr>
<td>26</td>
<td>5260-5-026</td>
<td>50</td>
<td>2080-0050</td>
</tr>
<tr>
<td>28</td>
<td>5260-5-028</td>
<td>55</td>
<td>2080-0055</td>
</tr>
<tr>
<td>30</td>
<td>5260-5-030</td>
<td>60</td>
<td>2080-0060</td>
</tr>
<tr>
<td>35</td>
<td>5260-5-035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5260-5-040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5260-5-045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5260-5-050</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Caution: Do not use Trident 2030-65XX screws.

Figure 13

Drill Guide
(6060-5-310 - 45° vs 60°)
or
(6060-5-300 - 3.2 vs 4.0)

Figure 14

3.5mm Hex Drive Head

3.5mm Torx Drive Head
Trial Insert Reduction

After metal shell implantation, insert the Trident Trial liner into the Trident Tritanium shell. At this point the patient should be taken through a complete range of motion using the final selected implant sizes (**Table 4**). Careful assessment of impingement at the extreme range of motion should be performed. A final check of hip mechanics should be completed to include range of motion consistent with the patient’s normal daily activities. At this point joint laxity should also be assessed, understanding the type of anesthetic used and its effects on soft tissue.

Note: Impingement should be carefully assessed and avoided during range of motion. Impingement can result in increased wear in metal-polyethylene systems.

Insert will provide a final check of hip mechanics.

Table 4: Trident Insert Trials

<table>
<thead>
<tr>
<th>Alpha Code</th>
<th>22mm</th>
<th>26mm</th>
<th>28mm</th>
<th>32mm</th>
<th>36mm</th>
<th>40mm</th>
<th>44mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Available in 0° only.

Insert Implantation

Select the appropriate size Silicone Insert Positioner Tip.

Load Silicone Insert Positioner Tip to Insert Positioner/Impactor Handle (**Figure 15**).

Load the polyethylene to Insert Positioner Tip. Press firmly to ensure insert is being securely held (**Figure 16**).

Note: Polyethylene components are pre-sterilized and cannot be sterilized after opening.

Ensure that the inside of the shell is clean and free of soft tissue or any other debris, which could prevent the insert from properly sitting in the shell.
Insert Implantation (cont.)

Gently introduce the polyethylene insert making sure that the insert flange scallops are aligned with the slot at the rim of the shell (this allows seating the insert at the initial position supported by four indexing barbs). Once the insert is seated at the initial position, slowly turn and drop the insert into the final pre-locking position (Figure 17).

Note: Having a clear view of the rim of the acetabulum will allow easier visualization of the shell’s slot and indexing barbs for proper positioning of the insert.

Remove Silicone Insert Positioner Tip from the Insert Positioner/Impactor Handle.

Select appropriate size Plastic Insert Impactor Tip.

Load Plastic Insert Impactor Tip to Insert Positioner/Impactor Handle.

Position Insert Positioner/Impactor Handle into ID of insert. Take care to align handle with axis of shell. Strike handle with approximately four firm mallet blows to fully seat insert.

Note: In order to obtain a secure lock it is recommended to use only the hard plastic Insert Impactor Tips to impact the polyethylene inserts.

Verify insert is fully seated and properly aligned into the acetabular shell. Check the lock by running a small osteotome around the periphery of the shell/insert interface.

Note: As with any modular interface under load, there is a potential for micromotion and associated fretting and/or corrosion. When properly engaged, the Trident Innerchange locking mechanism is designed to minimize motion at the taper interface and risk of corrosion potential.

Figure 17

Polyethylene Insert
Head Assembly
Prior to head assembly, neck length selection may be re-evaluated using a Stryker V40 or C-taper Trial Head. Place the Trial Head onto the stem neck taper and reduce the hip to verify that the mechanics have not been altered due to implant seating.

Remove the Trial Head and dry the implant trunnion with a laparotomy sponge or sterile towel.

Select the appropriate corresponding V40 or C-taper Femoral Head size and place it onto the dry trunnion of the femoral stem with a slight twist. Impact the head with two moderate blows using the Stem Head Impactor.

Optional Step
Note: When selecting a BIOLOX delta Anatomic and BIOLOX delta Universal Taper Ceramic Femoral Head for implantation, use of a Universal Adaptor Sleeve is necessary.

Universal Adaptor Sleeves

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Taper</th>
<th>Stem Material Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-0XXXT</td>
<td>C-taper</td>
<td>TMZF, Ti-6Al-4V, CoCr</td>
</tr>
<tr>
<td>6519-T-XXX</td>
<td>V40</td>
<td>TMZF, Ti-6Al-4V, CoCr</td>
</tr>
</tbody>
</table>

After completing the trialing process, intra-operatively assemble the Adaptor Sleeve to the femoral stem manually. The Universal Adaptor Sleeve must be fully seated on the stem trunnion before the head is assembled.

Note: In no instance should any attempt be made to pre-assemble the Adaptor Sleeve inside the BIOLOX delta Anatomic or BIOLOX delta Universal Ceramic Head.

Intra-operatively assemble the BIOLOX delta Anatomic or BIOLOX delta Universal Taper Ceramic head onto the sleeved femoral stem and set with one to three moderate blows using the Stem Head Impactor (1104-1000). Care must be taken to avoid excessive impact forces when assembling the Ceramic Head to the sleeved femoral component.
Removal of the Cup Insert and Shell

Polyethylene Insert Removal
Utilize a 3/16” (5mm) drill bit to create an off-center hole in the polyethylene insert. Use the “T” handle to thread the Polyethylene Insert Removal Tool into the insert, and advance the tool to the medial wall of the shell to dislodge the insert (Figures 18 & 19).

Note: Prior to performing a liner exchange, visually assess the shell's locking mechanism for damage. If damaged, shell should be replaced.

Revising the Trident Tritanium Acetabular Shell with a Trident Polyethylene Insert
The Trident Insert Trials are used to evaluate the shell face position and provide a final check of hip biomechanics. The polyethylene inserts provide 12 different insert orientations within the shell to provide optimal joint stability.

Follow **Insert Implantation**, to insert the polyethylene insert.

Trident Tritanium Shell Removal
Should removal of the metal shell ever become necessary, an osteotome or small burr can be passed around the cup periphery to loosen the fixation interface. The CuttingEdge Shell Positioner can be threaded into the dome hole of the cup. A Slotted Mallet is slid over the positioner shaft to assist with the shell removal.
Head Disassembly

The Head Disassembly Instrument is used to remove an impacted head. Inspect the stem neck trunnion to verify that no damage has occurred prior to impacting a replacement head. A replacement head may then be attached to the stem neck taper and secured using the Stem Head Impactor.

Revision of V40 or C-Taper Alumina and BIOLOX delta Ceramic Heads

Revision to a Ceramic Head

If the ceramic head needs to be revised for any reason, a new ceramic head must not be affixed to the existing stem trunnion because the taper will have been deformed through assembly with the first ceramic head component. If the surgeon wishes to revise with a ceramic head, a Universal Adaptor Sleeve or V40 Adapter Sleeve must be used. This will allow for revision to a new ceramic femoral head on an unused trunnion. Refer to LCHS/DS for surgical protocol information.

Revision to a Metal Head

In the case of revision to a metal head, if the original stem and its trunnion appear intact, the original hip stem need not be replaced.

Insert Compatibility

Polyethylene Inserts are compatible with Alumina, BIOLOX delta and CoCr Heads.

Revision of BIOLOX delta Universal Taper Ceramic Heads

If the ceramic head needs to be revised for any reason, remove the ceramic head with the Head Disassembly Instrument (1118-6000 or 6059-9-505 depending on femoral head size – Figures 20 & 21) and remove the Universal Adaptor Sleeve with the Ceramic Head Sleeve Disassembly Adaptor (1118-1005). If the surgeon wishes to revise with another BIOLOX delta Universal Taper Ceramic Head, place a new Universal Adaptor Sleeve onto the stem trunnion and then assemble the BIOLOX delta Universal Taper Ceramic Head onto the sleeved stem trunnion. In the case of revision to a metal head, if the original stem and its trunnion appear intact, the original hip stem need not be replaced and a compatible metal head can be used.
Abduction/Anteverision Alignment Guide

Shell Positioner/Impactor Handle

Silicone Insert Positioner Tips

- 2111-0022: 22mm
- 2111-0026: 26mm
- 2111-0028: 28mm
- 2111-0032: 32mm
- 2111-0036: 36mm
- 2111-0040: 40mm
- 2111-0044: 44mm

Plastic Insert Impactor Tips

- 2111-3022: 22mm
- 2111-3026: 26mm
- 2111-3028: 28mm
- 2111-3032: 32mm
- 2111-3036: 36mm
- 2111-3040: 40mm
- 2111-3044: 44mm

Ceramic Removal Tool

- 2112-0000: 38mm
- 2112-0010: 39mm
- 2112-0038: 40mm
- 2112-0041: 41mm
- 2112-0042: 42mm
- 2112-0043: 43mm
- 2112-0044: 44mm
- 2112-0045: 45mm
- 2112-0046: 46mm
- 2112-0047: 47mm
- 2112-0048: 48mm
- 2112-0049: 49mm

Cases

- 2202-4020: Trident Tritanium Window Trial Case
- 2202-4040: Top Tray
- 2202-4060: Bottom tray
- 8000-0150: Lid
- 2202-0020: Trident Instrument Case (not including lid and trays)
- 2202-0090: Lid
- 2202-0040: Top Tray: Insert Trials (0° & 10°)
- 2202-0060: Middle Tray: Universal Window Trials
- 2202-0080: Bottom Tray: Preparation Tray

Cutting Edge Acetabular Reamers

- 2102-0438: 38mm
- 2102-0439: 39mm
- 2102-0440: 40mm
- 2102-0441: 41mm
- 2102-0442: 42mm
- 2102-0443: 43mm
- 2102-0444: 44mm
- 2102-0445: 45mm
- 2102-0446: 46mm
- 2102-0447: 47mm
- 2102-0448: 48mm
- 2102-0449: 49mm
- 2102-0450: 50mm
- 2102-0451: 51mm
- 2102-0452: 52mm
- 2102-0453: 53mm
- 2102-0454: 54mm
- 2102-0455: 55mm
- 2102-0456: 56mm
- 2102-0457: 57mm
- 2102-0458: 58mm
- 2102-0459: 59mm
- 2102-0460: 60mm
- 2102-0461: 61mm
- 2102-0462: 62mm
- 2102-0463: 63mm
- 2102-0464: 64mm
- 2102-0465: 65mm
- 2102-0466: 66mm
- 2102-0467: 67mm
- 2102-0468: 68mm
- 2102-0469: 69mm
- 2102-0470: 70mm
- 2102-0471: 71mm
- 2102-0472: 72mm
- 2102-0473: 73mm
- 2102-0474: 74mm
- 2102-0475: 75mm
- 2102-0476: 76mm
- 2102-0477: 77mm
- 2102-0478: 78mm
- 2102-0479: 79mm
- 2102-0480: 80mm

System 12 Screw Tray

- 6060-9-090: LFIT Anatomic V40 Single Layer Sterilization Case
- 2202-1020: LFIT Anatomic V40 Instrument Tray
- 8000-0150: LFIT Anatomic Sterilization Case Lid
- 2202-1010: LFIT Anatomic C-Taper Single Layer Sterilization Case
- 2202-1030: LFIT Anatomic C-Taper Instrument Tray
- 8000-0150: LFIT Anatomic Sterilization Case Lid

Cutting Edge Bone Screw Tray

- 2408-0000: Acetabular Trial Insert Containment Screw Kit

Templates:

ITEM89 Trident Tritanium Hemispherical

Eccentric/Constrained Cases and Trays (for trials only)

The system provides the option of either a Single Tier or Double Tier case. The Double Tier case accommodates both the 10° Constrained Insert Trial Tray and the Eccentric Trial Tray.

- 8000-0200: Double Tier Case
- 8000-0100: Single Tier Case
- 2202-1100: Trident 10° Constrained Insert Trial Tray
- 2202-3020: Trident 0° and All-Poly Constrained Insert Trial Tray
- 2202-3090: Trident 0° and All-Poly Constrained Insert Trial Lid
A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Stryker does not dispense medical advice and recommends that surgeons be trained in the use of any particular product before using it in surgery.

The information presented is intended to demonstrate the breadth of Stryker product offerings. A surgeon must always refer to the package insert, product label and/or instructions for use before using any Stryker product. Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.

Stryker Corporation or its divisions or other corporate affiliated entities own, use or have applied for the following trademarks or service marks: Crossfire, Cuttingedge, LIFIT, Stryker, and Trident, Tritanium, V40, X3.

BIOLOX is a trademark of Ceramix GmbH Innovatives Keramik-Engineering.

All other trademarks are trademarks of their respective owners or holders.